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A B S T R A C T

The ratio of transpiration to total terrestrial evapotranspiration (T/ET) plays an important role in the hydro-
logical cycle and in the energy budgets between the land and the atmosphere. Although China has experienced
substantial climate warming and vegetation restoration (i.e., greening) over the past decades, the response of T/
ET to the changing climate and environmental factors is poorly understood. Here, we apply a model-data fusion
method that integrates the Priestly-Taylor Jet Propulsion Laboratory (PT-JPL) model with multivariate ob-
servational datasets (transpiration and evapotranspiration) to quantify the relative contributions of multiple
factors to the T/ET trend for the terrestrial ecosystem of China from 1982 to 2015. Validation against the
observational data indicates that the PT-JPL model performed well. The multi-year average T/ET was estimated
to be 0.56 ± 0.05 in China. The T/ET of the forest ecosystems (0.65–0.72) was generally higher than that of the
non-forest ecosystems (0.41–0.60). T/ET increased remarkably at a rate of 0.0019 yr−1 (P < 0.01) during the
study period. Leaf area index increased significantly over the period, by 0.0031 m2m−2 yr−1. It appears that
greening and climate change were the most likely causes of the increasing T/ET in China, directly explaining
57.89% and 36.84% of the T/ET trend, respectively. Particularly, in the subtropical-tropical monsoonal region,
greening directly contributed 24.43% to the T/ET trend whereas climate change contributed 60.95%. The in-
fluences of greening and climate change on T/ET trends are mutually reinforcing. Additionally, partial corre-
lation analyses between the climate-driven T/ET and the climate variables indicate that warming (0.04 °C yr−1,
P < 0.01) was the major driving force of the climate-induced interannual variability of T/ET across the whole
study area (R=0.84), especially in the subtropical-tropical monsoonal region (R=0.89). Our results may help
elucidate the interactions between terrestrial ecosystems and the atmosphere within the context of long-term
global climate changes.

1. Introduction

Evapotranspiration (ET) is a complex ecohydrological process that
plays a pivotal role in the carbon cycle and energy budgets of the

terrestrial ecosystems (Jung et al., 2010; Seneviratne et al., 2006). This
process consists of biological transpiration (T), soil evaporation (ES),
and canopy interception evaporation (EI) (Kool et al., 2014; Wang and
Dickinson, 2012). An accurate quantification of the ratio of
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transpiration to total terrestrial evapotranspiration (T/ET or T/
(T+ ES+EI)) is indispensable in the estimation of land water flux,
which in turn can provide a deeper insight into the global interactions
between the atmosphere and the terrestrial ecosystems (Lian et al.,
2018). Quantifying the impact of changing environmental on T/ET is an
important topic of research (Fisher et al., 2017). Over recent years, a
wide range of approaches has been used to estimate T/ET (e.g.,
Jasechko et al., 2013; Maxwell and Condon, 2016; Lian et al., 2018),
but none of these studies has quantified the relative contributions of
multiple factors to the current terrestrial T/ET trend.

Of particular importance to water security and ecosystem manage-
ment is the ability to quantify the impacts of multiple environmental
factors to T/ET (Fisher et al., 2017). Several studies have focused on
how T/ET responds to a range of biotic and abiotic variables (Granier
et al., 1996; Kool et al., 2014; Good et al., 2015; Fatichi and Pappas,
2017; Li et al., 2019), but no uniform conclusion has been reached. For
example, most studies have shown that vegetation plays a dominant
role in evapotranspiration partitioning (e.g., Scanlon and Kustas, 2012;
Wang et al., 2014; Zhou et al., 2016; Fatichi and Pappas, 2017), while
other studies have found that the correlation between leaf area index
(LAI) and T/ET is not statistically significant (Gu et al., 2018). Ad-
ditionally, climate change, energy variability, CO2 fertilization and
other environmental factors are known to affect T/ET in ways that are
inherently nonlinear and difficult to simulate (Loik et al., 2004; Moran
et al., 2009; Bell et al., 2010; Costa et al., 2010; Schlesinger and
Jasechko, 2014; Zhu et al., 2015; Li et al., 2018a; Stoy et al., 2019). Due
to its large variability in climate and topography (Piao et al., 2005),
China is ideal for investigating the responses of T/ET to environmental
changes. Moreover, China’s terrestrial ecosystem has experienced a
complex set of dramatic changes in climate (e.g. climate warming)
(Piao et al., 2010) as well as extensive vegetation greening (Piao et al.,
2015; Li et al., 2018b) during the past few decades. These changes have
profoundly altered the hydrological and physiological processes of the
terrestrial ecosystems (Li et al., 2018b). Although a wide of studies
highlight the significance of these environmental changes to terrestrial
T/ET in China (e.g., Hu et al., 2009; Chang et al., 2014; Zhu et al., 2015;
Song et al., 2018; Zhou et al., 2018), little is known about how con-
current changes of all of them have affected the T/ET trend of China’s
terrestrial ecosystem.

Previous research has improved our knowledge of T/ET, but its
magnitude is still subject to debate (e.g., Wei et al., 2017; Jasechko
et al., 2013; Kool et al., 2014; Zhou et al., 2016; Xiao et al., 2018;
Talsma, 2018). For example, the isotope-based method produced T/ET
higher than 70%, global land surface model estimated the T/ET to be
approximately 50%, and hydrometric method calculated T/ET ex-
ceeding 50% (Sutanto et al., 2014). Although site measurements pro-
vide accurate local information on the T/ET ratio, their relative scarcity
and inconsistent measurement (from only a few days or months up to
years) precludes large scale up-scaling. Alternatively, models offer an
effective way to derive T/ET estimates across temporal and spatial
scales (Lian et al., 2018). By combining a set or sets of observations and
a model, the model-data fusion method makes it possible to estimate
model parameters and their respective uncertainties (Williams et al.,
2009). Recently, the model-data fusion method has been increasingly
used to optimize evapotranspiration model parameters and quantify
model uncertainties based only on the observed evapotranspiration
(Clark and Gelfand, 2006; García et al., 2013; Zhu et al., 2013, 2014a;
Zhang et al., 2017; Gu et al., 2018). Those studies have remarkably
improved the accuracy of overall evapotranspiration simulations;
however, the combination with multiple parameters input to a de-
terministic model would generate large uncertainties in evapo-
transpiration partitioning (Reinds et al., 2008; Zhu et al., 2013).
Therefore, simultaneous parameterization of evapotranspiration and
transpiration in a deterministic model, based on observational evapo-
transpiration and transpiration data, is very essential for reducing the
error in simulated T/ET. However, such studies are relatively rare (Zhu

et al., 2014b).
With the rapid development of satellite technology, remote sensing-

driven models have been widely used to estimate evapotranspiration
and its partitioning (Cleugh et al., 2007; Mu et al., 2007; Fisher et al.,
2008; Yao et al., 2013; Zeng et al., 2014; Liu et al., 2016; McCabe et al.,
2019). Among these models, the Priestly-Taylor Jet Propulsion La-
boratory (PT-JPL) model has been extensively used, due to its minimal
requirements for local measurements (Fisher et al., 2008; Ershadi et al.,
2014; McCabe et al., 2016; Zhu et al., 2016a) and that performed best
among the four commonly used evapotranspiration models for most
ecosystems and climate regions (Michel et al., 2016; Miralles et al.,
2016). The PT-JPL model is considered to be effective for analyzing ET
partitioning (Fisher et al., 2008; Gu et al., 2018).

The objective of this study is to investigate the T/ET trend in China
for the period from 1982 to 2015. We first use observational tran-
spiration and evapotranspiration data from multiple ecosystems to
constrain the key parameters of the PT-JPL model, and then calculate
T/ET using the optimized model parameters. Using simulation experi-
ments of different scenarios and partial correlation analysis, we finally
partition and attribute the T/ET trend to the changes in LAI, climate,
and energy.

2. Methods and data

2.1. Methods

2.1.1. PT-JPL model
To overcome the uncertainty of the resistances in the

Penman–Monteith equation, Priestley and Taylor (1972) designed a
simple model for estimating potential evapotranspiration from wet
surfaces (Yao et al., 2013). Based on four plant physiological constraints
and one soil drought limitation, Fisher et al. (2008) developed the PT-
JPL model for translating estimated potential evapotranspiration into
actual evapotranspiration. In the PT-JPL model, ET has been parti-
tioned into Soil evaporation (ES), interception evaporation (LE) and
canopy transpiration (T). These are calculated as follows:
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where α is the PT coefficient of 1.26 for a water body (unitless), Δ is the
slope of the saturation-to-vapor pressure curve (kPa °C−1), γ is the
psychrometric constant (0.066 kPa °C−1), G is ground heat flux (W
m−2), Rnc is the net radiation to the canopy (W m−2), and is defined as
Rnc= Rn − Rns, where Rn is the net radiation (W m−2) and Rns is the
net radiation to the soil (W m−2). Rns can be calculated as

= −R R e k
ns n

LAIRn (Fisher et al., 2008), where kRn is the extinction
coefficient (unitless) (Impens and Lemur, 1969) and LAI is the leaf area
index (m2m−2). fwet is the relative surface wetness, fSM is the soil
moisture constraint, fg is the green canopy fraction, fT is the plant
temperature constraint, and fM is the plant moisture constraint, these
parameters are all unitless and calculated as follows:
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=f f f/M APAR APARmax (9)

where RH is relative humidity (%), VPD is saturation vapor pressure
deficit (kPa),Ta is air temperature (°C), Topt is optimum temperature for
plant growth (°C), β is the sensitivity of the soil moisture constraint to
VPD (kPa). fIPAR is the fraction of photosynthetically active radiation
(PAR) intercepted by canopy (unitless), and fAPAR is the fraction of PAR
absorbed by canopy (unitless), fAPARmax is the maximum fAPAR. To ob-
tain a long-term sequence simulation of T/ET using the PT-JPL model,
fIPAR and fAPAR are defined as (Ruimy et al., 1999; Hatfield et al., 1984):

= − − ×f b e(1 )k LAI
APAR 1 1

= − − ×f b e(1 )k LAI
IPAR 2 2

where b1, k1, b2, and k2 are parameters. Seven parameters (Supple-
mentary Table S1) in the PT-JPL model need to be estimated.

2.1.2. Global sensitivity analysis
Based on multi-source observational data (transpiration and eva-

potranspiration), Sobol’s method (Sobol, 1990, 2001) is used to identify
the sensitivity of parameters in the PT-JPL model. The model can be
expressed as

=y f X θ( , ¯) (10)

where y represents the model output, X is the input variable, and θ̄ is
the parameter vector. The total variance of function V(y) for the mul-
tivariate datasets (transpiration and evapotranspiration) is defined as
the product of the individual V(yi)s:

= ∏ =
V y V y( ) ( )i

I
i1 (11)

where V(yi) (i=1,2) can be decomposed into summands of increasing
dimensionality (Zhang et al., 2017), which can be expressed by
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where Vim is the partial variance with the first-order index of θm on the
model output yi, Vim is the partial variance with the second-order index
of the mth and nth parameter interactions of the ith data set, k is the
length of parameters. In this method, the sensitivity effect is char-
acterized by the ratio of the partial variances to the total variance
(Zhang et al., 2013). See Supplementary Text S1 for details.

We categorized the sensitivity of the parameters as “highly sensi-
tive”, “sensitive”, and “non-sensitive” when their contributions to the
overall model output variance were>10%,>1%, and<1%, respec-
tively (Tang et al., 2006). In addition, a sample size of 10,000 was used
to calculate the first-order and total-order sensitivity indices for the
seven parameters of the PT-JPL model.

2.1.3. Parameter optimization with Differential Evolution Markov Chain
According to the Bayes theorem, the posterior probability of para-

meter sets θ can be written as

∝p θ O p O θ p θ( | ) ( | ) ( ) (13)

where O are the observed datasets, p(θ) is the prior probability dis-
tribution of parameter θ, p(θ|O) is the posterior probability distribution
after Bayesian inference conditioned on available observations O, and p
(O|θ) is the likelihood function, which reflects the influence of the
observational datasets on parameter identification (Zhu et al., 2014a;
Zhang et al., 2017).

For each dataset (evapotranspiration and transpiration), the model-
data mismatch Δi(t) (i=1,2), which represents a relative “goodness-of-
fit” measure for each possible parameter vector (van Oijen et al., 2011;
Van Oijen et al., 2005), is expressed by

∆ = −t O t f t( ) ( ) ( )i i i (14)

where Oi(t) and fi(t) are observed and model estimated values of ith
dataset at time t, respectively. The likelihood can be expressed as:
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where Ti is the total length of observations of the ith data set, σi
(i=1,2) is the standard deviation of the model error of the ith dataset
(Braswell et al., 2005), and σi can be expressed as
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The likelihood function for multivariate data sets p(O|θ), used for
parameter estimation is then defined as the product of the individual p
(Oi(⋅)|θ) (Richardson et al., 2010)
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where I is the number of datasets. The framework can be easily used
when additional observations are available (Zhu et al., 2014b). In this
study, the two datasets used to simultaneously optimize the parameter
values were eddy covariance measured evapotranspiration and sap flow
measured transpiration.

This method can reduce the prior uncertainties of the sensitive
parameters and improve model accuracy (Gu et al., 2018). In this study,
the coefficient of determination (R2) and the root-mean-square-error
(RMSE) were used to evaluate the model performance.

2.1.4. Simulation setup and analysis
To better understand the mechanisms controlling T/ET in the ter-

restrial ecosystem, we conducted seven simulations to examine the ef-
fects of three factors: LAI, climate and energy (Table 1). In our study,
the climate effects included the influences of temperature and relative
humidity. Energy effects referred to the impacts of net radiation.

To determine the relative importance of these three factors on ter-
restrial T/ET in China, we designed the following protocol. In the
combined simulation (experiment 1, Table 1), we allowed all environ-
mental factors to vary during the study period to determine the overall
effects. In the following three simulations (experiments 2–4, Table 1),
we held one of the driving environmental factors constant at an initial
level, while allowing the others to change over time. Then, the effects of
each environmental factor on terrestrial T/ET was quantified by cal-
culating the difference in T/ET between the experiment where all fac-
tors changed over time and the experiment where the factor of interest
was held constant. This approach captures both the direct effects of
each environmental factor on terrestrial T/ET and the interactive effects
of each factor with the other environmental factors. To examine the
relative importance of interactive versus direct effects, we conducted
another three simulations (experiments 5–7, Table 1) where only one of
the environmental factors was allowed to change over time. Therefore,
the direct effect of the LAI dynamic (‘LAI Only’), climate change (‘CLIM
Only’) and energy variability (‘RAD Only’) can be captured by the fifth,
sixth and seventh experiment, respectively. The combined direct and

Table 1
Parameters and time periods used in each simulation experiment.

Experiment LAI Climate Energy Scenario

1 1982–2015 1982–2015 1982–2015 All Combined
2 1982 1982–2015 1982–2015 Combined without LAI
3 1982–2015 mean 1982–2015 Combined without

Climate
4 1982–2015 1982–2015 mean Combined without

Radiation
5 1982–2015 mean mean LAI only
6 1982 1982–2015 mean Climate only
7 1982 mean 1982–2015 Radiation only

“Climate” refers to temperature and relative humidity. “Energy” refers to net
radiation.
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interactive effects of the LAI dynamic (‘LAI+’), climate change (‘CLIM
+’) and energy vary (‘RAD+’) can be determined as the differences
between the first and second scenarios, first and third scenarios, and
first and fourth scenarios, respectively.

In addition, to compare the response of interannual variations in T/
ET to annual temperature and precipitation, a partial correlation ana-
lysis was carried out on the results of scenario 6 in Table1. Regional
mean T/ETs were calculated from regional mean transpiration and
evapotranspiration values. The trend in regional T/ET was determined
from the linear least squares regression of T/ET against year. Linear
least squares regression method was also used to examine the slope of
T/ET at the pixel scale.

2.2. Data

2.2.1. Observational data
In this study, water flux data (transpiration and evapotranspiration)

from published literature were used to identify the sensitive parameters
and evaluate the performance of the PT-JPL model across different
biomes. The observational evapotranspiration data cover 15 forest sites,
15 grassland sites, 15 cropland sites, and 7 wetland sites (Zheng et al.,
2016). Additional transpiration data for China were collected in this
study, comprising 20 forest sites, 2 shrub sites, 3 cropland sites, and 1
grassland site (Fig. 1). We adopted the following methods to screen
these data. First, transpiration flux data were measured using only the
sap flow method at individual sites. However, the sap flow method is
not applicable to grassland sites; therefore, for the grassland site, we
inversed the data using the Hydrus-1D model, based on the site mea-
surement data (Zhao et al., 2010). Second, we selected only those sites

with at least 1 year of continuous flux measurements. Meanwhile, the
data measured only during the growing season or longer than the
growing season were used to represent the annual transpiration, be-
cause the contribution of transpiration during the winter to the annual
transpiration is negligible. Detailed information for each site is listed in
Supplementary Table S2. Furthermore, using a map of climatic regions
in China (He et al., 2019), we classified the country into four climatic
regions (i.e., high-cold Tibetan Plateau region (TP), temperate con-
tinental region (TCon), temperate monsoonal region (TMon), and sub-
tropical-tropical monsoonal region (SubT)) to investigate responses of
the terrestrial T/ET to environmental changes in different climatic re-
gions

2.2.2. Remote sensing data
Remote sensing, which provides consistent LAI measurement data-

sets, has been widely used to monitor terrestrial vegetation growth
(Piao et al., 2015). In this study, the arithmetic means of LAI from the
Global Land Surface Satellite (GLASS) (Xiao et al., 2014, 2016) and
Long-term Global Mapping (GLOBMAP) (Liu et al., 2012) data sets were
used to assess vegetation growth. The GLASS LAI dataset was generated
from AVHRR and MODIS reflectance data with general regression
neural networks (Xiao et al., 2014). The temporal resolution of this
dataset is 8 d and the spatial resolution is 0.05°. The GLOBMAP LAI
dataset was constructed by merging the AVHRR LAI (1982–2000) with
MODIS LAI (2000–2011) (Liu et al., 2012). The temporal resolution of
GLOBMAP LAI is half a month during 1982–2000 and 8 d during
2001–2015, and the spatial resolution is 0.08°.

Repeated long-term satellite vegetation index measurements show a
notable greening trend in the terrestrial ecosystem of China since 1982

Fig. 1. Spatial distributions of sites for evapotranspiration (Obs_ET) and transpiration (Obs_T) observations in China. The base map reflects vegetation cover of China
(Liu et al., 2002). EBF= evergreen broadleaf forest; DBF= deciduous broadleaf forest; ENF= evergreen needleleaf forest; DNF=deciduous needleleaf forest;
MF=mixed forest; SHR= shrubland; GRA=grassland; and CRO= cropland. The division of climatic regions is from the China Natural Geography Atlas (He et al.,
2019). TP= high-cold Tibetan Plateau region; TCon= temperate continental region; TMon= temperate monsoonal region; and SubT= subtropical-tropical
monsoonal region.
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(Piao et al., 2015). The annual increase in LAI was 0.0031m2m−2

(P < 0.01) over the period 1982–2015, based on the forcing data used
in this study (Fig. 2a).

2.2.3. Meteorological and energy data
We generated the gridded meteorological data (temperature, re-

lative humidity and precipitation) from 1098 ground meteorological
stations using ANUSPLIN interpolation computer software (Wang et al.,
2017). The net radiation data were calculated from the FAO Penman
model. Daily surface net radiation data for 53 radiation sites were used
to optimize the model parameters, and then the net radiation data for
699 weather sites were calculated using the FAO Penman model and
measurement data of these stations. Finally, the gridded net radiation
data were obtained using ANUSPLIN interpolation computer software
(Gao et al., 2013; Ren et al., 2018).

China has experienced significant climatic warming (Piao et al.,
2010) and the annual temperature has increased by 0.04 °C yr−1 since
1982 (P < 0.01) (Fig. 2b), while annual precipitation has not changed
significantly during this period (Fig. 2c). Moreover, net radiation in
China has declined significantly during the past decades (Ren et al.,
2018; Wild, 2009; Wild et al., 2009), with a decrease of 0.12MJ yr−1

(P < 0.01) (Fig. 2d).

3. Results

3.1. Parameter optimization and validation

We use the observational transpiration and evapotranspiration data
and Sobol’s method to test the sensitivity indices of the PT-JPL model
parameters across different ecosystems. Supplementary Figure S1
shows that four of the parameters, k1, k2, β and Topt, are the most
sensitive across various ecosystems, implying that these factors have
the most influence on transpiration and evapotranspiration. Topt has the
highest first-order sensitivity indices in the forest and crop ecosystems
(0.88 and 0.79, respectively), and β has the highest sensitivity indices in
the shrub and grassland ecosystems (0.56 and 0.27, respectively).

We further use the Differential Evolution Markov Chain (DEMC)
method to sample the posterior distributions of the sensitivity para-
meters (Supplementary Figure S2). The optimized β has a relatively low
value (0.80) in the grassland ecosystem, suggesting that the surface
constraint to the soil water content should be enhanced (Zhang et al.,

2017). The Topt parameter is highly correlated to the dynamic algo-
rithms that we analyzed (Supplementary Figure S3), suggesting that our
optimized values are reasonable. Variations in the optimized median k1
and k2 are large in the shrub ecosystem, mainly due to their relatively
low sensitivities. Based on the posterior distributions of the sensitivity
parameters, we tabulate the value of key parameters for the PT-JPL
model for different ecosystems in the terrestrial ecosystem of China
(Supplementary Table S3).

The accuracy of estimated T/ET depends on the accuracy of the
simulated transpiration and evapotranspiration. Fig. 3 compares the
model performance by using the optimized and original parameters
with the directly observed transpiration and evapotranspiration data:
the model using the optimized parameters performed better than that
using the original parameters, especially for non-forest sites. For eva-
potranspiration, comparing all sites, forests sites and non-forest sites,
the R2 values increased from 0.67, 0.60, and 0.53 to 0.71, 0.68, and
0.64, respectively, and RMSE decreased from 209.54mm yr−1,
217.53mm yr−1, and 203.59mm yr−1 to 153.57mm yr−1, 147.27mm
yr−1, and 116.12mm yr−1, respectively (Fig. 3a). For transpiration, the
optimized model also performed better than the original model, the R2

value increased from 0.38 to 0.63 and RMSE decreased from
110.64mm yr−1 to 68.12mm yr−1 for all sites. For the non-forest sites
in particular, the R2 value increased remarkably, from 0.23 to 0.69, and
RMSE decreased from 134.03mm yr−1 to 72.46mm yr−1 (Fig. 3b).

3.2. Spatial pattern of T/ET

The spatial pattern of mean annual T/ET for the period of
1982–2015 is shown in Fig. 4a. The annual T/ET is generally higher
than 0.5 for the extensive monsoonal regions of China. Extensive forest
cover, abundant precipitation, and high temperatures account for the
high T/ET in these areas. In contrast, the annual T/ET is usually lower
than 0.4 in the temperate-continental and high-cold Tibetan Plateau
areas that are dominated by the alpine grasslands or deserts.

The multi-year average annual T/ET for the terrestrial ecosystems of
China is 0.56 ± 0.05 (mean ± standard deviation) during the period
of 1982–2015. The highest T/ET occurs in the subtropical-tropical
monsoonal region (annual average 0.63 ± 0.06) followed by the
temperate monsoonal region (annual average 0.60 ± 0.05), the tem-
perate continental region (annual average 0.46 ± 0.07), and the high-
cold Tibetan Plateau region (annual average 0.33 ± 0.03) (Fig. 4b).

Fig. 2. Changes in (a) leaf area index (LAI), (b) annual mean temperature, (c) annual precipitation, and (d) annual net radiation in China for the period of
1982–2015.
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Meanwhile, T/ET varies widely among biomes. For example, forest
ecosystems generally have higher annual T/ET than non-forest eco-
systems (Supplementary Figure S4). Transpiration accounts for> 65%
of the total evapotranspiration in forest ecosystems and the highest T/
ET occurs in deciduous needleleaf forests (annual average
0.72 ± 0.15). For non-forest ecosystems, the annual average T/ET of
the shrub ecosystem is almost 0.60, followed by croplands (annual
average 0.55 ± 0.11). Grasslands have the lowest annual average T/
ET (0.41 ± 0.09), which can be ascribed to the low vegetation cover.

3.3. T/ET trend

Fig. 5 shows the trend in T/ET during the period of 1982–2015
related to environmental changes. T/ET values that were estimated
using the ‘all combined’ simulation scenario demonstrate a remarkable
positive trend, with an annual increase of 0.0019 yr−1 (P < 0.01)
(Fig. 5d). This significant increasing trend in T/ET is consistent for
several regions (P < 0.01), and the largest annual increase in T/ET was
found in the temperate continental region, with an increase of 0.0031

yr−1. The annual increase in T/ET for the subtropical-tropical mon-
soonal, temperate monsoonal, and high-cold Tibetan Plateau regions is
0.0021 yr−1, 0.0015 yr−1, and 0.0014 yr−1, respectively (Fig. 5e).

We investigate the direct contribution of the forcing factors to the
T/ET trend using experiments 5 through 7. For the terrestrial ecosys-
tems of China, the variation in LAI directly contributes 0.0011 yr−1 to
the increase in T/ET (P < 0.01), accounting for about 57.89% of the T/
ET trend using the ‘all combined’ simulation scenario (Fig. 5a). His-
torical climate variation also directly contributes substantially to the
increase in T/ET (0.0007 yr−1), explaining 36.84% of the variation in
the T/ET trend (Fig. 5b). However, net radiation plays a minor role in
the increasing T/ET trend. In the ‘RAD Only’ simulation scenario, the T/
ET anomaly is nearly zero (Fig. 5c). Fig. 5e shows that LAI is the most
important driving factor for the increasing T/ET trend, and climate
variation is the second most influential factor for the increasing T/ET
trend in the temperate continental and temperate monsoonal regions. In
the high-cold Tibetan Plateau region, LAI also dominates the increasing
T/ET trend, whereas climate variation reduces the slope of the T/ET
trend. While in the subtropical-tropical monsoonal region, LAI directly

Fig. 3. Validation of the PT-JPL model based
on observational (a) evapotranspiration and (b)
transpiration data using original and optimized
parameters. The black text in the figures in-
dicated R2 and RMSE of all sites; the red and
blue points and text in the figures represent
forest sites and non-forest sites, respectively.
(For interpretation of the references to colour
in this figure legend, the reader is referred to
the web version of this article).

Fig. 4. (a) Spatial pattern of mean annual T/ET in the terrestrial ecosystem of China during the period of 1982–2015, and (b) mean annual average T/ET for each
region.
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contributes only 21.43%, and climate variation directly contributes
60.95% of the increasing T/ET trend. Net radiation has a negligible
impact on the increasing T/ET trend in the different regions. This is also
the case at the national scale.

LAI dynamic has an indirect effect on T/ET by enabling plants to be
more responsive to climate change, and climate change also has an
indirect effect on T/ET by promoting the effect of LAI (Fig. 5e). Ac-
cording to our analyses, increased LAI could lead to a larger effect of
climate change on the T/ET trend (78.95%), than that resulting from
climate change alone (36.84%), throughout the study area. Thus, cli-
mate change effects may vary from 36.84% to 78.95%, depending on
the existence and magnitude of its interactions with LAI. Meanwhile,
LAI dynamics also show a larger effect (68.42%) on T/ET trend when
considering interactions with climate change, compared to their direct
effects (57.89%). For the temperate-continental, temperate-monsoonal,
and subtropical-tropical monsoonal regions, the effects of LAI dynamic
and climate change on T/ET trends are mutually reinforcing, which
consistent with the results of national scale. However, for the high-cold
Tibetan Plateau region, the impacts of LAI and climate partly offset
each other (Fig. 5e). The interactions among net radiation and the other
environmental factors show negligible impact on the increasing T/ET
trends; these interactions are not apparent in Fig. 5e.

The simulation scenarios ‘LAI Only’ and ‘CLIM Only’ both reveal
that T/ET increased from 1982 to 2015. Nevertheless, these models
differ in terms of transpiration and evapotranspiration. According to
Fig. 6a, changes in LAI (‘LAI Only’) can lead to an increase in both

evapotranspiration and transpiration. The increase in evapotranspira-
tion (0.02%–0.06%) is lower than that in transpiration (0.04%–0.37%)
for all regions. According to the ‘CLIM Only’ simulation, evapo-
transpiration in China is relatively stable from 1982 to 2015, with an
annual increase of 0.03%, while transpiration rate increases by 0.26%
yr−1 (Fig. 6b). Net radiation (‘RAD Only’) can cause evapotranspiration
and transpiration to decrease by similar proportions across the whole
study area (Fig. 6c). Overall, the ‘All Combined’ scenario indicates that
environmental changes caused transpiration to increase (0.33% yr−1)
and reduced evapotranspiration (-0.04% yr−1) across the whole study
area. These results are mostly consistent with those for the temperate
continental, temperate monsoonal, and subtropical-tropical monsoonal
regions. Meanwhile, although changes in environmental factors can
raise evapotranspiration and transpiration in the high-cold Tibetan
Plateau region, the increase in evapotranspiration is lower than that in
transpiration (Fig. 6d).

The spatial pattern of the sensitivities of the T/ET trend to LAI,
climate, energy, and all drivers is shown in Fig. 7. LAI raised T/ET in
71% of the entire study area and increased it significantly in 42%
(P < 0.05) of the study area. The temperate monsoonal region has the
highest increase in T/ET. Meanwhile, T/ET declined in about 29% of
the study area, mainly in northeastern China and part of the south-
western subtropical-tropical monsoonal region (Fig. 7a). On their own,
climate factors raised T/ET in most parts of the temperate continental,
temperate monsoonal, and subtropical-tropical monsoonal regions, but
lowered it in the high-cold Tibetan Plateau region (Fig. 7b). Changes in

Fig. 5. Relative importance of environmental factors on the T/ET trend in China from 1982 to 2015. ‘LAI only’, ‘CLIM only’ and ‘RAD only’ represent the direct
influence of LAI, climate, and energy, respectively. ‘LAI+’ and ‘CLIM+’ represent both the direct and interactive influences of LAI and climate.
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net radiation had much less effect on the T/ET trends than changes in
either LAI or climate over the study period. The slope of the T/ET trend
across the study area is between -0.002 and 0.002 (Fig. 7c). When the
effect of all the drivers was combined, there is a positive T/ET trend in
about 80% of the pixels and negative T/ET trend only in part of
northeastern China and the high-cold Tibetan Plateau (Fig. 7d). We
further analyzed the effect of different factors on evapotranspiration
and transpiration and found that evapotranspiration and transpiration
have different sensitivities to the changes in LAI, climate, and energy
(Supplementary Figure S5).

To further investigate the effect of climatic variables on the in-
creasing T/ET trend, we conducted a partial correlation analysis by
comparing the annual T/ET series calculated from ‘CLIM Only’ with
climatic conditions (mean annual temperature and annual cumulative
precipitation) for China’s terrestrial ecosystems during the period of
1982–2015 (Fig. 8). T/ET is significantly positively correlated with
mean annual temperature (R=0.84), while it is non-significantly ne-
gatively correlated with annual cumulative precipitation (R = -0.47)
for the whole study area. The correlations between T/ET and climatic

variables in the different regions are consistent with those for the whole
country, especially in the subtropical-tropical monsoonal region
(R=0.89). This suggests that, both nationally and regionally, tem-
perature change is the most important driver of the portion of inter-
annual T/ET variation that could be ascribed to climate (Fig. 8).

The spatial pattern of the partial correlation coefficient between T/
ET and climate variables for the entire country during the study period
is shown in Fig. 9. More than 90% of the pixels show a positive cor-
relation between temperature and T/ET variations. The highest partial
correlation coefficient between T/ET and temperature is located mainly
in the subtropical-tropical monsoonal regions (Fig. 9a). In contrast,
precipitation and T/ET are negatively correlated for about 80% of the
pixels of China, especially in the temperate and subtropical-tropical
monsoonal regions. Additionally, the correlation between precipitation
and T/ET is positive for parts of the high-cold Tibetan Plateau and
temperate continental regions (Fig. 9b).

Fig. 6. Changes in evapotranspiration and transpiration rate according to (a) ‘LAI Only’, (b) ‘CLIM Only’, (c) ‘RAD Only’, and (d) ‘All Combined’ for the period of
1982–2015. Evapotranspiration and transpiration trends were normalized by their multi-year average values.

Fig. 7. Spatial pattern of simulated T/ET trend in the scenarios of (a) ‘LAI Only’, (b) ‘CLIM Only’, (c) ‘RAD Only’, and (d) ‘ALL Combined’ in China from 1982 to 2015.
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4. Discussion

Understanding the influence of model parameters on model re-
sponse is essential to hydrological modeling (Brigode et al., 2013;
McCabe et al., 2016). To obtain reliable estimated results, the key
parameters of PT-JPL model are needed to optimize (Zhang et al.,
2017). Previous studies focused on the model’s sensitivity to forcing
data (Fisher et al., 2008; García et al., 2013) or optimized the key
parameters only based on observational evapotranspiration data (Zhang
et al., 2017). Our study used a model-data fusion method to simulta-
neously parameterize the PT-JPL model against multivariate datasets
(observational evapotranspiration and transpiration) to improve the
accuracy of estimated T/ET, and found that four parameters (Topt, k1, k2
and β) were sensitive to the transpiration and evapotranspiration si-
mulation across different ecosystems, which was almost consistent with
Zhang et al. (2017). Topt was a basic parameter to the bio-constraint
variable fT and ranked first in the sensitivity index in forest and crop-
land ecosystems. In the original PT-JPL model, Topt was dynamically
calculated (Fisher et al., 2008), while that Topt was unreliable in some
specific biomes and climate conditions (García et al., 2013). Our study
showed the optimized Topt had better correlation to that calculated
following Potter et al. (1993) (Supplementary Figure S3). The other bio-
constraints (fg and fm) could be directly reflected by the sensitivity
parameters k1 and k2. Additionally, β was more sensitive than other
parameters in grassland and shrub ecosystems (Supplementary Figure
S1), mainly because of that the soil received more energy than the
canopy during the process of energy partition (Zhang et al., 2017),
which indicated β had the most significant impacts on soil evaporation
simulation and ET partition. The result is consistent with the previous
finding that fSM played a key role in model uncertainty in drylands
(García et al., 2013). Although β was usually set as a unique constant
parameter (Fisher et al., 2008; Mu et al., 2007), other studies argued
that β should be fine-tuned in different regions (García et al., 2013;

Zhang et al., 2017). Consistent with the previous study (Zhang et al.,
2017), β was reduced in grassland ecosystem (Supplementary Figure S2
and Table S3), suggesting that the control of the soil moisture stress
should be strengthened in dry ecosystem.

Based on the PT-JPL model using optimized parameters, the un-
certainties in estimated transpiration and evapotranspiration were re-
duced. The model with optimized parameters showed better perfor-
mance, and that was comparable to the performance achieved using
models driven by climatic and remote sensing data. For evapo-
transpiration, the optimized model explained 71%, 68% and 64% of the
variation for all sites, forest sites and non-forest sites, respectively,
while the MODIS ET algorithm explained only 49%, 58%, and 32%,
respectively (Niu et al., 2019). Moreover, the optimized PT-JPL model
yielded an R2 values close to those of the other models (e.g., RS-PM,
BESS, SWH), for which the R2 values are between 0.61 and 0.77 (e.g.,
Yuan et al., 2010; Li et al., 2014; Jiang and Ryu, 2016; Hu, 2017).
Additionally, Chen et al. (2014) reported R2 values of 0.5 to 0.8 for
eight ET models at 23 eddy covariance sites. For transpiration, due to
the limited amount of available transpiration measurement data, few
studies have validated model performance at a large spatial scale. The
accuracy of the optimized PT-JPL model is close to that of site-scale
model. For example, the R2 values of regressions between estimated
transpiration and observational transpiration were 0.57–0.71 for forest
and 0.13–0.83 for non-forest ecosystems, based on the empirical solar-
induced chlorophyll fluorescence-based canopy conductance models
(Shan et al., 2019); additionally, the R2 values were 0.69–0.88 for cool
temperate forest (Miyazawa et al., 2017). To further validate the model
performance, we compared the estimated T/ET to the available field
observation T/ET data in China, which we extracted from Lian et al.
(2018) and Schlesinger and Jasechko (2014) (Supplementary Table S4);
the R2 value was 0.85 and the RMSE was 0.06 (Supplementary Figure
S7). Therefore, despite the uncertainties, the accuracy of the PT-JPL
model using the optimized parameters reaches that of the other models.

Fig. 8. Partial correlation coefficients between T/ET and climate factors for each region in China for the period of 1982–2015.

Fig. 9. Spatial pattern of the partial correlation coefficient between T/ET and (a) mean annual temperature and (b) annual cumulative precipitation in China from
1982 to 2015.
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We further compared T/ET simulation results with T/ET results of
previous studies and found that our estimated annual T/ET is almost
within the range of those calculated by the process- and remote sensing-
based models (Supplementary Text S2).

Our study provides a method to calculate T/ET at the ecosystem
scale with results reflecting the characteristics of China’s terrestrial
ecosystems. The ratio of transpiration to evapotranspiration is influ-
enced by vegetation morphology (Zhou et al., 2016), climate factors
(Granier et al., 1996), air turbulence (Tuzet et al., 1997), and soil
moisture availability (Shuttleworth and Wallace, 1985). Our study as-
sociates the T/ET trend with LAI dynamics, climate change, and energy
variability.

Vegetation is the first-order factor affecting ET partitioning (Scanlon
and Kustas, 2012). LAI is the primary factor controlling variations in T/
ET (Lian et al., 2018; Zhu et al., 2016b; Berkelhammer et al., 2016;
Fatichi and Pappas, 2017). The LAI dynamic not only determines the
seasonal changes of T/ET (Li et al., 2019; Scott and Biederman, 2017;
Zhu et al., 2015), but also determines most of the variability in annual
T/ET across sites (Wang et al., 2014). An increase in LAI promotes
canopy transpiration and interception evaporation by increasing the
surface area, thereby leading to the rise in evapotranspiration (Li et al.,
2018a; Piao et al., 2007). However, increased LAI usually reduces soil
evaporation (Gu et al., 2018; Hu et al., 2009) mainly because its lowers
the amount of energy (net radiation) reaching the soil surface (Hungate
et al., 2002). The latter process may, in turn, offset the increase in
evapotranspiration associated with high LAI (Huang et al., 2015).
Therefore, transpiration and evapotranspiration may have different
sensitivities to changes in LAI. The slopes of the correlations between
transpiration and evapotranspiration and the LAI variables (as surro-
gates for the sensitivity of transpiration and evapotranspiration to
changes in LAI) are illustrated in Supplementary Figure S8a, which
might explain the relationship between the T/ET trend and greening.
The sensitivity of transpiration to changes in LAI is much higher than
that of evapotranspiration. Across the entire study area, transpiration
and evapotranspiration increased by 18.04% and 3.07%, respectively,
in response to the 0.1m2m−2 increase in LAI. Since transpiration is
more sensitive to changes in LAI than evapotranspiration, greening
(Fig. 2a and Supplementary Figure S9a) caused T/ET to increase over
nearly the whole study area (Fig. 7a). A decrease in LAI in northeastern
China (Supplementary Figure S9a) accounts in large part for the de-
creasing trend in T/ET in this region. Among the regions that were
compared, transpiration is least sensitive to changes in LAI in the
subtropical-tropical monsoonal region where evergreen forests are ex-
tensively distributed. A 0.1m2m−2 increase in LAI corresponds to only
a 7.74% increase in transpiration in this area (Supplementary Figure
S8a), mainly attributed to the offsets of the increase in interception
evaporation caused by high LAI (Fatichi and Pappas, 2017).

Recent studies have shown that air temperature may affect T/ET by
altering stomatal conductance at the site scale (Zhu et al., 2015), and
that rising air temperature may raise the T/ET ratio (Zhu et al., 2014a).
Higher temperatures can steepen the water potential gradient by low-
ering the relative humidity outside the leaf; the transpiration rate is
therefore modulated by changes in water vapor pressure (Hopkins and
Huner, 1999). Meanwhile, evapotranspiration also exhibits a rising
tendency, mainly due to temperature-driven increases in the vapor
pressure deficit (Bell et al., 2010; Li et al., 2018a). The effect of vapor
pressure deficit on evapotranspiration is predicted to become increas-
ingly important as global temperatures continue to rise (Novick et al.,
2016). We compared the sensitivities of transpiration and evapo-
transpiration to temperature variation (Supplementary Figure S8b).
Both transpiration and evapotranspiration, as estimated in experiment
6 (Table 1), increase with the rise in temperature. Nevertheless, the
correlation between transpiration and temperature is stronger than that
between evapotranspiration and temperature, especially in the sub-
tropical-tropical monsoonal region. The influences of climate change
and LAI dynamic on T/ET trends are mutually reinforcing. On one

hand, climatic warming can promote vegetation growth by extending
the growing season and simulating summertime photosynthesis
(Niemand et al., 2005; Piao et al., 2008). Enhanced plant growth
usually increases the leaf area, which would in turn cause T/ET to in-
crease. On the other hand, increasing LAI would lead to an increase in
transpiration area which could support greater canopy conductance
(Stoy et al., 2019).

T/ET generally decreases with increasing precipitation (Moran
et al., 2009; Reynolds et al., 2000), which is consistent with our results
(Fig. 8). We ascribe this relationship to the fact that transpiration and
evapotranspiration respond differently to increasing precipitation
(Supplementary Figure S8c) (Gu et al., 2018). Meanwhile, the corre-
lation between precipitation and T/ET is positive in parts of the high-
cold Tibetan Plateau and temperate continental regions; these areas are
relatively dry, hence, an increase in precipitation would cause T/ET to
increase by promoting vegetation growth.

Net radiation determines the variation in evapotranspiration (Costa
et al., 2010; Fisher et al., 2008; Zeng et al., 2014), and LAI controls how
evapotranspiration is partitioned (Good et al., 2015; Wang et al., 2014;
Wei et al., 2017). Therefore, changes in net radiation may not alter
evapotranspiration partitioning if LAI remains unchanged. Meanwhile,
previous studies found that the ratio of T/ET to the fraction of photo-
synthetically active radiation intercepted by the canopy is constant
(about 1.2), suggesting that there is a relatively constant relationship
between transpiration and intercepted radiation (Espadafor et al.,
2015).

Our study follows a modeling approach to differentiate the effects of
LAI, climate, and energy variability on T/ET. However, real-world
ecosystems are affected by several other factors, especially increasing
atmospheric CO2 (Huang et al., 2015). The rise in atmospheric CO2

could affect T/ET by causing stomatal closure and altering leaf area
(Lian et al., 2018). Increased atmospheric CO2 concentrations tend to
reduce stomatal conductance based on leaf-level measurements (Sellers
et al., 1996; Douville et al., 2000), and have been argued to decrease
canopy conductance at continental scale (Gedney et al., 2006). How-
ever, CO2 fertilization (the process whereby elevated CO2 causes LAI to
increase) could lead to an increase in the transpiration area; this could
support greater canopy conductance, thereby compensating for the
reduced canopy conductance resulting from increased atmospheric CO2

(Stoy et al., 2019). The impact of elevated CO2 has shown geographical
variation. For temperate forests, transpiration was unaffected by ele-
vated CO2 because the greater canopy leaf area nullified the effect of
leaf hydraulic acclimation on canopy conductance (Tor-ngern et al.,
2015). However, in water limited ecosystems, which generally have
relative low T/ET values, an increase in leaf area (which increases
transpiration) compensates for stomatal closure (which reduces tran-
spiration), thus creating a net transpiration increase (Lian et al., 2018;
Woodward, 1990) and further leading to an increase in T/ET. In moist
ecosystems with higher T/ET values, there is stronger suppression of
transpiration as CO2 increases (Lian et al., 2018). Although elevated
CO2 may reduce canopy conductance per unit area via light or hy-
draulic limitation, the potentially increasing leaf area leads to con-
served transpiration (Schäfer et al., 2002; Ward et al., 2013), when the
atmospheric demand for and soil supply of water remain unchanged,
canopy transpiration and T/ET should decrease if the direct stomatal
closure in response to elevated CO2 cannot be countered by increased
leaf area caused by CO2 fertilization. In addition to being affected by
rising atmosphere CO2, LAI dynamic was also affected by the other
factors, such as nitrogen deposition and afforestation (Piao et al., 2015;
Zhu et al., 2015). The increasing T/ET caused by an increase in LAI was
the combined result of various factors.

Although we have made progress in improving the accuracy of T/ET
estimates by optimizing the sensitivity parameters, many uncertainties
still affect the model outputs. The principal sources of model error
might arise from the model structure and the inherent assumptions after
the model parameters have been optimized by the DEMC method (Zhu
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et al., 2014b). Uncertainty from the measured forcing data (Gu et al.,
2018) and the observational data from the sap flow method and eddy
covariance technique (Wilson et al., 2002, 2001) still may affect the
accuracy of the estimated T/ET. Meanwhile, a spatial mismatch be-
tween the observational data and the satellite data also may reduce the
accuracy of T/ET estimates (Fisher et al., 2008). In addition, this study
was based only on the optimized PT-JPL model; in future, we will use
multiple models to quantify the uncertainty in the PT-JPL model esti-
mates.

5. Conclusions

This study used the PT-JPL model to calculate T/ET for the terres-
trial ecosystems of China between 1982 and 2015. The T/ET trend and
its drivers were further analyzed. A model-data fusion method was used
to simultaneously parameterize the PT-JPL model against multivariate
datasets (observed transpiration and evapotranspiration). We found
that the PT-JPL model performs well for the terrestrial ecosystems of
China. Validation data showed that the PT-JPL model explains 63% and
71% of the variation in observed transpiration and evapotranspiration,
with RMSE values of 68.12mm yr−1 and 153.57mm yr−1, respectively.
The multi-year averaged T/ET for China is 0.56 ± 0.05. T/ET in-
creased significantly during the study period, with an annual rise of
0.0019 yr−1 (P < 0.01). Greening and climate change explain 57.89%
and 36.84% of the T/ET trend, respectively, whereas the contribution
of energy change to the T/ET trend is negligible. Further, LAI dynamic
has an indirect effect on T/ET by enabling plants to be more responsive
to climate change, and climate change also has an indirect effect on T/
ET by promoting the effect of LAI. In addition, partial correlation
analyses between climate-only driven T/ET and the climate drivers
show that temperature has the strongest influence on the interannual
variations in T/ET (R=0.84).

Acknowledgements

This work was supported by the National Key Research and
Development Program of China (2016YFC0500204) and the Strategic
Priority Research Program of the Chinese Academy of Sciences
(XDA19020301).

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the
online version, at doi:https://doi.org/10.1016/j.agrformet.2019.
107701.

References

Bell, J.E., Weng, E.S., Luo, Y.Q., 2010. Ecohydrological responses to multifactor global
change in a tallgrass prairie: a modeling analysis. J. Geophys. Res-Biogeo 115, 12.

Berkelhammer, M., et al., 2016. Convergent approaches to determine an ecosystem’s
transpiration fraction. Global Biogeochem. Cycles 30 (6), 933–951.

Braswell, B.H., Sacks, W.J., E. L, Schimel, D.S., 2005. Estimating diurnal to annual eco-
system parameters by synthesis of a carbon flux model with eddy covariance net
ecosystem exchange observations. Glob. Chang. Biol. 11 (2), 335–355.

Brigode, P., Oudin, L., Perrin, C., 2013. Hydrological model parameter instability: a
source of additional uncertainty in estimating the hydrological impacts of climate
change? J. Hydrol. 467 (7), 410–425.

Chang, X., et al., 2014. Qinghai spruce (Picea crassifolia) forest transpiration and canopy
conductance in the upper Heihe River Basin of arid northwestern China. Agric. For.
Meteorol. 198–199, 209–220.

Chen, Y., et al., 2014. Comparison of satellite-based evapotranspiration models over
terrestrial ecosystems in China. Remote Sens. Environ. 140, 279–293.

Clark, J.S., Gelfand, A.E., 2006. A future for models and data in environmental science.
Trends Ecol. Evol. 21 (7), 375–380.

Cleugh, H.A., Leuning, R., Mu, Q., Running, S.W., 2007. Regional evaporation estimates
from flux tower and MODIS satellite data. Remote Sens. Environ. 106 (3), 285–304.

Costa, M.H., et al., 2010. Atmospheric versus vegetation controls of Amazonian tropical
rain forest evapotranspiration: are the wet and seasonally dry rain forests any dif-
ferent? J. Geophys. Res. 115.

Douville, H., Planton, S., Royer, J.F., Stephenson, D.B., Tyteca, S., 2000. Importance of

vegetation feedbacks in doubled-CO2 climate experiments. J. Geophys. Res. 105,
14841–14861.

Ershadi, A., McCabe, M.F., Evans, J.P., Chaney, N.W., Wood, E.F., 2014. Multi-site eva-
luation of terrestrial evaporation models using FLUXNET data. Agric. For. Meteorol.
187, 46–61.

Espadafor, M., Orgaz, F., Testi, L., Lorite, I.J., Villalobos, F.J., 2015. Transpiration of
young almond trees in relation to intercepted radiation. Irrig. Sci. 33 (4), 265–275.

Fatichi, S., Pappas, C., 2017. Constrained variability of modeled T:ET ratio across biomes.
Geophys. Res. Lett. 44 (13), 6795–6803.

Fisher, J.B., Tu, K.P., Baldocchi, D.D., 2008. Global estimates of the land–atmosphere
water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET
sites. Remote Sens. Environ. 112 (3), 901–919.

Fisher, J.B., et al., 2017. The future of evapotranspiration: global requirements for eco-
system functioning, carbon and climate feedbacks, agricultural management, and
water resources. Water Resour. Res. 53, 2618–2626.

Gao, Y.Z., et al., 2013. Spatial-temporal variation characteristics of surface net radiation
in China over the past 50 years. J. Geo-Inf. Scie. 15 (1), 1–10.

García, M., et al., 2013. Actual evapotranspiration in drylands derived from in-situ and
satellite data: assessing biophysical constraints. Remote Sens. Environ. 131, 103–118.

Gedney, N., et al., 2006. Detection of a direct carbon dioxide effect in continental river
runoff records. Nature 439 (7078), 835.

Good, S.P., Noone, D., Bowen, G., 2015. Hydrologic connectivity constrains partitioning
of global terrestrial water fluxes. Science 349 (6244), 175–177.

Granier, A., Huc, R., Barigah, S.T., 1996. Transpiration of natural rain forest and its de-
pendence on climatic factors. Agric. For. Meteorol. 78 (1–2), 19–29.

Gu, C., et al., 2018. Partitioning evapotranspiration using an optimized satellite-based ET
model across biomes. Agric. For. Meteorol. 259, 355–363.

Hatfield, J.L., Asrar, G., Kanemasu, E.T., 1984. Intercepted photosynthetically active
radiation estimated by spectral reflectance. Remote Sens. Environ. 14, 65–75.

He, H.L., et al., 2019. Altered trends in carbon uptake in China’s terrestrial ecosystems
under the enhanced summer monsoon and warming hiatus. Sci. Rev., nuz021.
https://doi.org/10.1093/nsr/nwz021.

Hopkins, W.G., Huner, N.P.A., 1999. Introduction to Plant Physiology. AIBS Bulletin, 10.
John Wiley and Sons 39 pp.

Hu, Z.M., et al., 2009. Partitioning of evapotranspiration and its controls in four grassland
ecosystems: application of a two-source model. Agric. For. Meteorol. 149 (9),
1410–1420.

Hu, Z.M., 2017. Modeling and partitioning of regional evapotranspiration using a sa-
tellite-driven water-carbon coupling model. Remote Sens. 9 (1), 54.

Huang, M., et al., 2015. Change in terrestrial ecosystem water-use efficiency over the last
three decades. Glob. Chang. Biol. 21 (6), 2366–2378.

Hungate, B.A., et al., 2002. Evapotranspiration and soil water content in a scrub-oak
woodland under carbon dioxide enrichment. Glob. Chang. Biol. 8 (3), 289–298.

Impens, I., Lemur, R., 1969. Extinction of net radiation in different crop canopies. Theor.
Appl. Climatol. 17, 403–412.

Jasechko, S., et al., 2013. Terrestrial water fluxes dominated by transpiration. Nature 496
(7445), 347–350.

Jiang, C.Y., Ryu, Y., 2016. Multi-scale evaluation of global gross primary productivity and
evapotranspiration products derived from Breathing Earth System Simulator (BESS).
Remote Sens. Environ. 186, 528–547.

Jung, M., et al., 2010. Recent decline in the global land evapotranspiration trend due to
limited moisture supply. Nature 467 (7318), 951–954.

Kool, D., et al., 2014. A review of approaches for evapotranspiration partitioning. Agric.
For. Meteorol. 184, 56–70.

Li, X.L., et al., 2014. Estimation of evapotranspiration over the terrestrial ecosystems in
China. Ecohydrology 7 (1), 139–149 2014.

Li, X.Y., et al., 2018a. Spatiotemporal pattern of terrestrial evapotranspiration in China
during the past thirty years. Agric. For. Meteorol. 259, 131–140.

Li, Y., et al., 2018b. Divergent hydrological response to large-scale afforestation and
vegetation greening in China. Sci. Adv. 4 (5), 9.

Li, X., et al., 2019. A simple and objective method to partition evapotranspiration into
transpiration and evaporation at eddy-covariance sites. Agric. Forest Meterol. 265
(2019), 171–182.

Lian, X., et al., 2018. Partitioning global land evapotranspiration using CMIP5 models
constrained by observations. Nat. Clim. Chang. 8 (7), 640–646.

Liu, J., et al., 2002. The land use and land cover change database and its relative studies
in China. J. Geogr. Sci. 12 (3), 275–282.

Liu, S.M., et al., 2016. Upscaling evapotranspiration measurements from multi-site to the
satellite pixel scale over heterogeneous land surfaces. Agric. For. Meteorol. 230,
97–113.

Liu, Y., Liu, R., Chen, J.M., 2012. Retrospective retrieval of long-term consistent global
leaf area index (1981-2011) from combined AVHRR and MODIS data. J. Geophys.
Res. Biogeosci. 117 (G4) n/a-n/a.

Loik, M.E., Breshears, D.D., Lauenroth, W.K., Belnap, J., 2004. A multi-scale perspective
of water pulses in dryland ecosystems: climatology and ecohydrology of the western
USA. Oecologia 141 (2), 269–281.

Maxwell, R.M., Condon, L.E., 2016. Connections between groundwater flow and tran-
spiration partitioning. Science 353 (6297), 377–380.

McCabe, M.F., et al., 2016. The GEWEX LandFlux project: evaluation of model eva-
poration using tower-based and globally gridded forcing data. Geosci. Model. Dev. 9
(1), 283–305.

McCabe, M., Miralles, D., Holmes, T., Fisher, J., 2019. Advances in the Remote Sensing of
Terrestrial Evaporation. Remote Sens. 11 (9) 1138–1138.

Michel, D., et al., 2016. The WACMOS-ET project - Part 1: tower-scale evaluation of four
remote-sensing-based evapotranspiration algorithms. Hydrol. Earth Syst. Sci. 20 (2),
803–822.

Z. Niu, et al. Agricultural and Forest Meteorology 279 (2019) 107701

11

https://doi.org/10.1016/j.agrformet.2019.107701
https://doi.org/10.1016/j.agrformet.2019.107701
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0005
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0005
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0010
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0010
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0015
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0015
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0015
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0020
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0020
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0020
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0025
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0025
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0025
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0030
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0030
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0035
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0035
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0040
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0040
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0045
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0045
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0045
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0050
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0050
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0050
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0055
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0055
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0055
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0060
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0060
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0065
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0065
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0070
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0070
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0070
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0075
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0075
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0075
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0080
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0080
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0085
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0085
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0090
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0090
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0095
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0095
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0100
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0100
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0105
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0105
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0110
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0110
https://doi.org/10.1093/nsr/nwz021
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0120
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0120
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0125
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0125
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0125
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0130
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0130
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0135
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0135
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0140
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0140
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0145
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0145
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0150
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0150
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0155
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0155
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0155
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0160
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0160
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0165
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0165
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0170
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0170
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0175
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0175
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0180
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0180
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0185
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0185
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0185
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0190
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0190
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0195
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0195
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0200
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0200
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0200
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0205
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0205
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0205
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0210
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0210
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0210
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0215
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0215
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0220
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0220
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0220
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0225
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0225
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0230
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0230
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0230


Miralles, D.G., et al., 2016. The WACMOS-ET project &amp;ndash; Part 2: evaluation of
global terrestrial evaporation data sets. Hydrol. Earth Syst. Sci. 20 (2), 823–842.

Miyazawa, Y., et al., 2017. Transpiration of trees in a cool temperate forest on Mt. Aso,
Japan: comparison of model simulation and measurements. Ecol. Res. 32 (4),
547–557.

Moran, M.S., et al., 2009. Partitioning evapotranspiration in semiarid grassland and
shrubland ecosystems using time series of soil surface temperature. Agric. For.
Meteorol. 149 (1), 59–72.

Mu, Q., Heinsch, F.A., Zhao, M., Running, S.W., 2007. Development of a global evapo-
transpiration algorithm based on MODIS and global meteorology data. Remote Sens.
Environ. 111 (4), 519–536.

Niemand, C., Köstner, B., Prasse, H., Grünwald, T., Bernhofer, C., 2005. Relating tree
phenology with annual carbon fluxes at Tharandt forest. Meteorol. Z. 14 (2),
197–202.

Niu, Z.E., et al., 2019. The spatial-temporal patterns of evapotranspiration and its influ-
encing factors in Chinese terrestrial ecosystem from 2000 to 2015. Acta Ecol. Sin.
2019 (13). https://doi.org/10.5846/stxb201803090467. (in Chinese).

Novick, K.A., et al., 2016. The increasing importance of atmospheric demand for eco-
system water and carbon fluxes. Nat. Clim. Chang. 6 (11), 1023.

Piao, S., et al., 2010. The impacts of climate change on water resources and agriculture in
China. Nature 467 (7311), 43.

Piao, S., et al., 2005. Changes in vegetation net primary productivity from 1982 to 1999
in China. Global Biogeochem. Cycles 19 (2) n/a-n/a.

Piao, S., et al., 2007. Changes in climate and land use have a larger direct impact than
rising CO2 on global river runoff trends. Proc. Natl. Acad. Sci. U. S. A. 104 (39),
15242–15247.

Piao, S.L., et al., 2008. Net carbon dioxide losses of northern ecosystems in response to
autumn warming. Nature 451 (7174), 49–U3.

Piao, S.L., et al., 2015. Detection and attribution of vegetation greening trend in China
over the last 30 years. Glob. Chang. Biol. 21 (4), 1601–1609.

Potter, C.S., et al., 1993. Terrestrial ecosystem production: a process model based on
global satellite and surface data. Global Biogeochem. Cycles 7 (4), 811–841.

Priestley, C.H.B., Taylor, R.J., 1972. On the assessment of surface heat flux and eva-
poration using large-scale parameters. Mon. Weather. Rev. 100 (2), 81–92.

Reinds, G.J., van Oijen, M., Heuvelink, G.B.M., Kros, H., 2008. Bayesian calibration of the
VSD soil acidification model using European forest monitoring data. Geoderma 146
(3), 475–488.

Ren, X., He, H., Zhang, L., Yu, G., 2018. Global radiation, photosynthetically active ra-
diation, and the diffuse component dataset of China, 1981–2010. Earth Syst. Sci. Data
Discuss. 10 (3), 1217–1226.

Reynolds, J.F., Kemp, P.R., Tenhunen, J., 2000. Effects of long-term rainfall variability on
evapotranspiration and soil water distribution in the Chihuahuan Desert: a modeling
analysis. Plant Ecol. 150, 145–159.

Richardson, A.D., et al., 2010. Estimating parameters of a forest ecosystem C model with
measurements of stocks and fluxes as joint constraints. Oecologia 164 (1), 25–40.

Ruimy, A., et al., 1999. Comparing global models of terrestrial net primary productivity
(NPP): analysis of differences in light absorption and light-use efficiency. Glob.
Chang. Biol. 5 (S1), 56–64.

Scanlon, T.M., Kustas, W.P., 2012. Partitioning evapotranspiration using an eddy covar-
iance-based technique: improved assessment of soil moisture and land–atmosphere
exchange dynamics. Vadose Zone J. 11 (3), 0.

Schäfer, R., Oren, R., Lai, C.T., Katul, G.G., 2002. Hydrologic balance in an intact tem-
perate forest ecosystem under ambient and elevated atmospheric CO2 concentration.
Glob. Chang. Biol. 8 (9), 895–911.

Schlesinger, W.H., Jasechko, S., 2014. Transpiration in the global water cycle. Agric. For.
Meteorol. 189, 115–117.

Scott, R., Biederman, J., 2017. Partitioning evapotranspiration using long‐term carbon
dioxide and water vapor fluxes. Geophys. Res. Lett. 44 (13), 6833–6840.

Sellers, P.J., et al., 1996. Comparison of radiative and physiological effects of doubled
atmospheric CO2 on climate. Science 271, 1402–1406.

Seneviratne, S.I., Luthi, D., Litschi, M., Schar, C., 2006. Land-atmosphere coupling and
climate change in Europe. Nature 443 (7108), 205–209.

Shan, N., et al., 2019. Modeling canopy conductance and transpiration from solar-induced
chlorophyll fluorescence. Agric. For. Meterol. 265 (15), 189–201.

Shuttleworth, W.J., Wallace, J., 1985. Evaporation from sparse crops‐an energy combi-
nation theory. Q. J. R. Meteorol. Soc. 111 (469), 839–855.

Sobol, I.M., 1990. On Sensitivity Estimation For Nonlinear Mathematical Models. Keldysh
Applied Mathematics Institute 2 (1), 112–118.

Sobol, I.M., 2001. Global sensitivity indices for nonlinear mathematical models and their
Monte Carlo estimates. Math. Comput. Simul. 55 (1), 271–280.

Song, L., et al., 2018. Canopy transpiration of Pinus sylvestris var. Mongolica in a sparse
wood grassland in the semiarid sandy region of Northeast China. Agric. For.
Meteorol. 250–251, 192–201.

Stoy, P.C., et al., 2019. Reviews and syntheses: turning the challenges of partitioning
ecosystem evaporation and transpiration into opportunities. Biogeosci. Discuss.
https://doi.org/10.5194/bg-2019-85. in review.

Sutanto, S.J., et al., 2014. HESS Opinions "A perspective on isotope versus non-isotope
approaches to determine the contribution of transpiration to total evaporation.
Hydrol. Earth Syst. Sci. 18 (8), 2815–2827.

Talsma, C., et al., 2018. Partitioning of evapotranspiration in remote sensing-based
models. Agric. For. Meteorol. 260–261, 131–143.

Tang, Y., Reed, P.M., Wagener, T., Van Werkhoven, K.L., 2006. Comparing sensitivity
analysis methods to advance lumped watershed model identification and evaluation.
Hydrol. Earth Syst. Sci. Discuss. 11 (2), 793–817.

Tor-ngern, P., et al., 2015. Increases in atmospheric CO2 have little influence on

transpiration of a temperate forest canopy. New Phytol. 205 (2), 518–525.
Tuzet, A., Castell, J.F., Perrier, A., Zurfluh, O., 1997. Flux heterogeneity and evapo-

transpiration partitioning in a sparse canopy: the fallow savanna. J. Hydrol. 188
(1–4), 482–493.

Van Oijen, M., et al., 2011. A Bayesian framework for model calibration, comparison and
analysis: application to four models for the biogeochemistry of a Norway spruce
forest. Agric. For. Meteorol. 151 (12), 1609–1621.

Van Oijen, M., Rougier, J., Smith, R., 2005. Bayesian calibration of process-based forest
models: bridging the gap between models and data. Tree Physiol. 25 (7), 915–927.

Wang, J., Wang, J., Ye, H., Liu, Y., He, H., 2017. An interpolated temperature and pre-
cipitation dataset at 1-km grid resolution in China (2000–2012). China Scientific Data
2 (1), 88–95.

Wang, K.C., Dickinson, R.E., 2012. A review of global terrestrial evapotranspiration:
observation, modeling, climatology, and climatic variability. Rev. Geophys. 50, 54.

Wang, L., Good, S.P., Caylor, K.K., 2014. Global synthesis of vegetation control on eva-
potranspiration partitioning. Geophys. Res. Lett. 41 (19), 6753–6757.

Ward, E.J., et al., 2013. The effects of elevated CO2 and nitrogen fertilization on stomatal
conductance estimated from 11 years of scaled sap flux measurements at Duke FACE.
Tree Physiol. 33, 135–151.

Wei, Z.W., et al., 2017. Revisiting the contribution of transpiration to global terrestrial
evapotranspiration. Geophys. Res. Lett. 44 (6), 2792–2801.

Wild, M., 2009. Global dimming and brightening: a review. J. Geophys. Res. 114 (D10),
1–31.

Wild, M., et al., 2009. Global dimming and brightening: an update beyond 2000. J.
Geophys. Res. 114 (D10), 1–14.

Williams, et al., 2009. Improving land surface models with FLUXNET data.
Biogeosciences 6, 1341–1359.

Wilson, K.B., et al., 2002. Energy balance closure at FLUXNET sites. Agric. For. Meteorol.
113 (1), 223–243.

Wilson, K.B., Hanson, P.J., Mulholland, P.J., Baldocchi, D.D., Wullschleger, S.D., 2001. A
comparison of methods for determining forest evapotranspiration and its compo-
nents: sap-flow, soil water budget, eddy covariance and catchment water balance.
Agric. For. Meteorol. 106 (2), 153–168.

Woodward, F.I., 1990. Global change: translating plant ecophysiological responses to
ecosystems. Trends Ecol. Evol. (Amst.) 5 (9), 308–311.

Xiao, Z., et al., 2014. Use of general regression neural networks for generating the GLASS
leaf area index product from time-series MODIS surface reflectance. IEEE Trans.
Geosci. Remote 52 (1), 209–223.

Xiao, Z., et al., 2016. Long-time-series global land surface satellite leaf area index product
derived from MODIS and AVHRR surface reflectance. IEEE Trans. Geosci. Remote
Sens. 54 (9), 5301–5318.

Yao, Y., et al., 2013. MODIS-driven estimation of terrestrial latent heat flux in China
based on a modified Priestley–Taylor algorithm. Agric. For. Meteorol. 171 (2013),
187–202.

Zeng, Z., et al., 2014. A worldwide analysis of spatiotemporal changes in water balance-
based evapotranspiration from 1982 to 2009. J. Geophys. Res. Atmos. 119 (3),
1186–1202.

Zhang, C., Chu, J.G., Fu, G.T., 2013. Sobol’’s sensitivity analysis for a distributed hy-
drological model of Yichun River Basin, China. J. Hydrol. 480, 58–68.

Zhang, K., et al., 2017. Parameter sensitivity analysis and optimization for a satellite-
based evapotranspiration model across multiple sites using Moderate Resolution
Imaging Spectroradiometer and flux data. J. Geophys. Res. Atmos. 122 (1), 230–245.

Xiao, W., et al., 2018. Evapotranspiration partitioning at the ecosystem scale using the
stable isotope method—a review. Agric. For. Meteorol. 263 (2018), 346–361.

Yuan, W.P., et al., 2010. Global estimates of evapotranspiration and gross primary pro-
duction based on MODIS and global meteorology data. Remote Sens. Environ. 114
(7), 1416–1431.

Zhao, Y., et al., 2010. Modeling grazing effects on coupled water and heat fluxes in Inner
Mongolia grassland. Soil Tillage Res. 109 (2), 75–86.

Zheng, H., et al., 2016. Spatial variation in annual actual evapotranspiration of terrestrial
ecosystems in China: results from eddy covariance measurements. J. Geogr. Sci. 26
(10), 1391–1411.

Zhou, S., Yu, B., Zhang, Y., Huang, Y., Wang, G., 2016. Partitioning evapotranspiration
based on the concept of underlying water use efficiency. Water Resour. Res. 52 (2),
1160–1175.

Zhou, S., Yu, B., Zhang, Y., Huang, Y., Wang, G., 2018. Water use efficiency and eva-
potranspiration partitioning for three typical ecosystems in the Heihe River Basin,
northwestern China. Agric. For. Meteorol. 253–254 (2018), 261–273.

Zhu, G., et al., 2016a. Multi-model ensemble prediction of terrestrial evapotranspiration
across north China using Bayesian model averaging. Hydrol. Process. 30 (16),
2861–2879.

Zhu, G., Su, Y., Li, X., Zhang, K., Li, C., 2013. Estimating actual evapotranspiration from
an alpine grassland on Qinghai-Tibetan plateau using a two-source model and
parameter uncertainty analysis by Bayesian approach. J. Hydrol. 476, 42–51.

Zhu, G.F., et al., 2014a. Simultaneously assimilating multivariate data sets into the two-
source evapotranspiration model by Bayesian approach: application to spring maize
in an arid region of northwestern China. Geosci. Model. Dev. 7 (4), 1467–1482.

Zhu, X.-J., et al., 2015. Spatiotemporal variations of T /ET (the ratio of transpiration to
evapotranspiration) in three forests of Eastern China. Ecol. Indic. 52, 411–421.

Zhu, G.F., et al., 2014b. Simultaneously assimilating multivariate data sets into the two-
source evapotranspiration model by Bayesian approach: application to spring maize
in an arid region of northwestern China. Geosci. Model. Dev. 7 (4), 1467–1482.

Zhu, Z., et al., 2016b. Greening of the Earth and its drivers. Nat. Clim. Chang. 6 (8),
791–795.

Z. Niu, et al. Agricultural and Forest Meteorology 279 (2019) 107701

12

http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0235
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0235
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0240
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0240
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0240
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0245
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0245
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0245
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0250
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0250
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0250
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0255
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0255
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0255
https://doi.org/10.5846/stxb201803090467
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0265
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0265
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0270
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0270
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0275
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0275
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0280
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0280
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0280
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0285
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0285
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0290
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0290
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0295
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0295
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0300
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0300
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0305
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0305
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0305
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0310
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0310
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0310
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0315
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0315
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0315
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0320
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0320
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0325
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0325
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0325
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0330
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0330
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0330
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0335
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0335
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0335
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0340
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0340
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0345
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0345
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0350
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0350
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0355
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0355
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0360
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0360
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0365
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0365
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0370
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0370
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0375
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0375
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0380
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0380
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0380
https://doi.org/10.5194/bg-2019-85
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0390
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0390
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0390
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0395
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0395
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0400
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0400
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0400
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0405
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0405
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0410
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0410
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0410
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0415
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0415
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0415
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0420
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0420
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0425
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0425
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0425
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0430
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0430
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0435
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0435
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0440
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0440
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0440
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0445
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0445
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0450
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0450
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0455
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0455
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0460
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0460
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0465
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0465
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0470
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0470
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0470
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0470
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0475
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0475
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0480
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0480
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0480
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0485
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0485
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0485
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0490
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0490
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0490
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0495
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0495
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0495
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0500
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0500
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0505
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0505
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0505
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0510
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0510
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0515
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0515
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0515
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0520
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0520
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0525
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0525
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0525
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0530
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0530
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0530
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0535
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0535
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0535
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0540
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0540
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0540
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0545
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0545
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0545
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0550
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0550
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0550
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0555
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0555
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0560
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0560
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0560
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0565
http://refhub.elsevier.com/S0168-1923(19)30317-X/sbref0565

	An increasing trend in the ratio of transpiration to total terrestrial evapotranspiration in China from 1982 to 2015 caused by greening and warming
	Introduction
	Methods and data
	Methods
	PT-JPL model
	Global sensitivity analysis
	Parameter optimization with Differential Evolution Markov Chain
	Simulation setup and analysis

	Data
	Observational data
	Remote sensing data
	Meteorological and energy data


	Results
	Parameter optimization and validation
	Spatial pattern of T/ET
	T/ET trend

	Discussion
	Conclusions
	Acknowledgements
	Supplementary data
	References




